Mark Scheme (Results)

November 2021

Pearson Edexcel GCSE
In Mathematics (1MA1)
Higher (Non-Calculator) Paper 1H

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2021
Question Paper Log Number P64630A
Publications Code 1MA1_1H_2111_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

General marking guidance

These notes offer general guidance, but the specific notes for examiners appertaining to individual questions take precedence.
1 All candidates must receive the same treatment. Examiners must mark the last candidate in exactly the same way as they mark the first. Where some judgement is required, mark schemes will provide the principles by which marks will be awarded; exemplification/indicative content will not be exhaustive. When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the response should be sent to review.

2 All the marks on the mark scheme are designed to be awarded; mark schemes should be applied positively. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme. If there is a wrong answer (or no answer) indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

Questions where working is not required: In general, the correct answer should be given full marks.
Questions that specifically require working: In general, candidates who do not show working on this type of question will get no marks - full details will be given in the mark scheme for each individual question.

3 Crossed out work
This should be marked unless the candidate has replaced it with
an alternative response.
Choice of method
If there is a choice of methods shown, mark the method that leads to the answer given on the answer line.
If no answer appears on the answer line, mark both methods then award the lower number of marks.
5 Incorrect method
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks. Send the response to review for your Team Leader to check.

6 Follow through marks

Follow through marks which involve a single stage calculation can be awarded without working as you can check the answer, but if ambiguous do not award.
Follow through marks which involve more than one stage of calculation can only be awarded on sight of the relevant working, even if it appears obvious that there is only one way you could get the answer given.

7 Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question or its context. (eg an incorrectly cancelled fraction when the unsimplified fraction would gain full marks).
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect (eg. incorrect algebraic simplification).

8 Probability
Probability answers must be given as a fraction, percentage or decimal. If a candidate gives a decimal equivalent to a probability, this should be written to at least 2 decimal places (unless tenths).
Incorrect notation should lose the accuracy marks, but be awarded any implied method marks.
If a probability fraction is given then cancelled incorrectly, ignore the incorrectly cancelled answer.
9 Linear equations
Unless indicated otherwise in the mark scheme, full marks can be gained if the solution alone is given on the answer line, or otherwise unambiguously identified in working (without contradiction elsewhere). Where the correct solution only is shown substituted, but not identified as the solution, the accuracy mark is lost but any method marks can be awarded (embedded answers).

10 Range of answers

Unless otherwise stated, when an answer is given as a range (eg 3.5-4.2) then this is inclusive of the end points (eg 3.5, 4.2) and all numbers within the range

11 Number in brackets after a calculation
Where there is a number in brackets after a calculation eg 2×6 ($=12$) then the mark can be awarded either for the correct method, implied by the calculation or for the correct answer to the calculation.

12 Use of inverted commas
Some numbers in the mark scheme will appear inside inverted commas eg " 12 " $\times 50$; the number in inverted commas cannot be any number - it must come from a correct method or process but the candidate may make an arithmetic error in their working.

13 Word in square brackets
Where a word is used in square brackets eg [area] $\times 1.5$: the value used for [area] does not have to come from a correct method or process but is the value that the candidate believes is the area. If there are any constraints on the value that can be used, details will be given in the mark scheme.

Misread

If a candidate misreads a number from the question. eg uses 252 instead of 255 ; method or process marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review.

Guidance on the use of abbreviations within this mark scheme

M method mark awarded for a correct method or partial method
P process mark awarded for a correct process as part of a problem solving question
A accuracy mark (awarded after a correct method or process; if no method or process is seen then full marks for the question are implied but see individual mark schemes for more details)

C communication mark awarded for a fully correct statement(s) with no contradiction or ambiguity

B unconditional accuracy mark (no method needed)
oe or equivalent
cao correct answer only
ft follow through (when appropriate as per mark scheme)
sc special case
dep dependent (on a previous mark)
indep independent
awrt answer which rounds to
isw ignore subsequent working

Paper: 1MA1/1H				
Question	Answer	Mark	Mark scheme	Additional guidance
2	Venn Diagram	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{C} 1 \end{aligned}$	for one correct region for two correct regions for all regions correct	Ignore all entries except the region you are marking for each mark
3	$1 \frac{8}{15}$	M2 (M1 A1	for a complete method, eg $4-2+\frac{3}{15}-\frac{10}{15}$ condoning error with one numerator or for $\frac{21}{5}-\frac{8}{3}=\frac{63}{15}-\frac{40}{15}\left(=\frac{23}{15}\right)$ with no more than one error for finding two fractions with a correct common denominator, with at least one correct corresponding numerator, eg $\frac{3}{15}, \frac{10}{15}$ or for converting both to improper fractions, eg $\frac{21}{5}, \frac{8}{3}$) $1 \frac{8}{15} \text { oe }$	At least one improper fraction must be correct Any equivalents must be a mixed number

Paper: 1MA1/1H				
Question	Answer	Mark	Mark scheme	Additional guidance
4	Rahim and correct figures	P1 P1 A1 C1	for start to the process to find 20% for Tamara, eg 220000×0.2 oe $(=44000)$ or 30% for Rahim, eg 160000×0.3 oe $(=48000)$ OR for $1-0.2(=0.8)$ or $100-20(=80)$ or $1+0.3(=1.3)$ or $100+30(=130)$ for a complete process to find at least one new value, eg $220000-" 44000 "(=176000)$ or $160000+" 48000 "(=208000)$ OR $220000 \times " 0.8 "(=176000) \text { or } 160000 \times " 1.3 "(=208000)$ for one correct value, 176000 or 208000 for correct conclusion supported by correct figures eg Rahim, 176000 and 208000	Build up processes are acceptable but must be complete and correct Award 0 marks for a correct answer with no supportive working
5	33	P1 P1 A1	for relating 24 to 8 parts or $(1$ part $=) 24 \div 8(=3)$ or for $15-7(=8)$ or starts to use a build-up method, eg (8:) $14: 30$ for $15-4(=11)$ and $24 \div 8(=3)$ or $15 \times 3(=45)$ and $4 \times 3(=12)$ or for $12(: 21): 45$ cao	8 parts $=24$

Paper: 1MA1/1H				
Question	Answer	Mark	Mark scheme	Additional guidance
6	12	P1 P1 A1	for a process to find the area of cross section, eg $750 \div 25(=30)$ oe or $\frac{1}{2} \times 5 \times h$ oe for a correct equation in h, eg $750 \div 25=\frac{1}{2} \times 5 \times h$ oe or $\frac{1}{2} \times 5 \times h \times 25=750$ oe or for a complete process to find h, eg $\frac{750}{25} \times \frac{2}{5}$ oe or " 30 " $\times 2 \div 5$ cao SC B1 for answer of 6 if P0 scored	May use any letter for h or may use?
7	Shown	M1 M1 M1 A1	for a correct expression for the area of one face of the cube, eg x^{2} or a correct expression for the surface area of the cube, eg $6 \times x^{2}$ for a correct expression for the surface area of the sphere, eg $4 \times \pi \times 3^{2}(=36 \pi)$ for forming a suitable equation, eg $6 \times x^{2}=4 \times \pi \times 3^{2}$ or $6 x^{2}=" 36 \pi "$ for completing the method to $x=\sqrt{6 \pi}$ or $k=6$	No marks for $x=\sqrt{6 \pi}$ without any working. $\begin{aligned} & 6 \times x^{2}=4 \times \pi \times 3^{2} \\ & x^{2}=36 \pi \div 6 \\ & x=\sqrt{6 \pi} \end{aligned}$

Paper: 1MA1/1H				
Question	Answer	Mark	Mark scheme	Additional guidance
8	8 and -3	M1 M1	for rearranging to get $x^{2}-5 x-24(=0)$ or $-x^{2}+5 x+24(=0)$	Can be implied by $(x-8)(x+3)$ or $(-x+8)(x+3)$
			for $(x \pm 8)(x \pm 3)$ or $(x+a)(x+b)$ where $a b=-24$ or $a+b=-5$ or substitution into formula, condoning one sign error eg $(x=) \frac{--5 \pm \sqrt{(-5)^{2}-4 \times 1 \times-24}}{2 \times 1}$	
		A1	for 8 and -3	
$\begin{array}{rr}9 & (\mathrm{a} \\ & (\mathrm{b}) \\ & \text { (c) } \\ & \\ & \text { (d) }\end{array}$	1	B1	cao	
	3	B1	cao	
	$\frac{1}{16}$	B1	oe	
	3	B1	cao	
10 (a)	30	P1	for a start to the process, eg $5406 \div 6(=901)$ or $5400 \div 6(=900)$ or $5000 \div 6(=833.33 .$. or $5410 \div 6(=901.66 .$.	
		P1	for a process to find the length of one side, eg $\sqrt{" 901 "}$ or $\sqrt{" 900 "}$ or $\sqrt{" 833.33 . . " ~ o r ~} \sqrt{" 901.66 . . "}$	
		A1	for 30	
	Explanation	C1	for a correct explanation based on their working in (a), eg underestimate because I rounded the total area down	Must be based on the use of a rounded value in a calculation

Paper: 1MA1/1H				
Question	Answer	Mark	Mark scheme	Additional guidance
11	$\frac{30 w}{6-21 w}$	P1 P1 P1 A1	for forming an equation, eg $6(2 w+y)=7 w(3 y+6)$ or $12 w+6 y=21 w y+42 w$ oe for expanding brackets correctly and gathering w terms or isolating y terms in a correct equation, eg $6 y=21 w y+30 w$ or $6 y-21 w y=42 w-12 w$ or $6 y-21 w y=30 w$ (dep on two terms in y) for factorising out the y, eg $y(6-21 w)=42 w-12 w$ or $y(6-21 w)=30 w$ or $3 y(2-7 w)=30 w$ for $(y=) \frac{30 w}{6-21 w}$ oe	Condone missing brackets for this mark
(a) (b)	cf graph 13 to 14	M1 A1 B1	for 5 or 6 points plotted correctly for a fully correct graph SC B1 if 5 or 6 of their points plotted not at the end but consistent within each interval and joined by a curve or line segments providing no gradient is negative for answer in the range 13 to 14 or ft their cf graph	If histograms drawn, points must be identified Accept a smooth curve or line segments Ignore to the left of the first point and right of the last point ft only from a cf graph

Paper: 1MA1/1H				
Question	Answer	Mark	Mark scheme	Additional guidance
13	Explanation	C1	explanation Acceptable examples he should have used $100(x)$ rather than $10(x)$ he should have used $1000 x$ and $10 x$ Ted's working does not eliminate the recurring decimals the recurring numbers after the decimal point have to be in the same sequence he should have multiplied by 100 to subtract easier after the decimal point he should have multiplied by 100 because two numbers are recurring Not acceptable examples it is not correct the method is not complete he should have used $1000 x$ he should have multiplied by 100 he should have multiplied by 100 and then done $100 x-10 x$ to give $43 / 90$	
14	Shown	M1 M1 A1	for a start to the method, eg finds one correct area $4(x+1)$ or $(x+7)(2 x+6)$ or $(x+1)(x+11)$ or $(x+7)(x+5)$ or $4(x+5)$ or $(x+11)(2 x+6)$ for a complete expression for the total area, eg $4(x+1)+(x+7)(2 x+6)$ or $4 x+4+2 x^{2}+14 x+6 x+42$ OR $(x+1)(x+11)+(x+7)(x+5) \text { or } x^{2}+x+11 x+11+x^{2}+7 x+5 x+35$ OR $(x+11)(2 x+6)-4(x+5) \text { or } 2 x^{2}+22 x+6 x+66-4 x-20$ for a complete chain of reasoning with fully correct algebra leading to $2 x^{2}+24 x+46$	$2 x^{2}+24 x+46$ is given so need to see brackets expanded correctly

Paper: 1MA1/1H				
Question	Answer	Mark	Mark scheme	Additional guidance
15	$\frac{26 x+15}{10 x}$	M1	for method to write at least one of the fractions with a suitable denominator, $\text { eg } \frac{4 x+3}{2 x} \times \frac{5}{5}\left(=\frac{20 x+15}{10 x}\right) \text { or } \frac{3}{5} \times \frac{2 x}{2 x}\left(=\frac{6 x}{10 x}\right)$	
		M1	for method to combine the fractions, eg $\frac{5(4 x+3)}{5 \times 2 x}+\frac{3 \times 2 x}{5 \times 2 x}$ or $\frac{5(4 x+3)+3 \times 2 x}{5 \times 2 x}$ or $\frac{20 x+15}{10 x}+\frac{6 x}{10 x}$	
		A1	for correct algebra leading to $\frac{26 x+15}{10 x}$ oe in form $\frac{a x+b}{c x}$	
16	$\frac{180}{336}$	P1	for $\frac{3}{7}$ or $\frac{4}{7}$ or $\frac{5}{7}$ as probability for second counter	May be seen in a calculation or on a diagram
		P1	for one correct product eg $\frac{3}{8} \times \frac{5}{7} \times \frac{4}{6}\left(=\frac{60}{336}\right)$ or $\frac{5}{8} \times \frac{3}{7} \times \frac{4}{6}\left(=\frac{60}{336}\right)$ or $\frac{5}{8} \times \frac{4}{7} \times \frac{3}{6}\left(=\frac{60}{336}\right)$	
		P1	for a complete process $\text { eg } \frac{3}{8} \times \frac{5}{7} \times \frac{4}{6}+\frac{5}{8} \times \frac{3}{7} \times \frac{4}{6}+\frac{5}{8} \times \frac{4}{7} \times \frac{3}{6}$	
		A1	$\text { oe, eg } \frac{15}{28}$ SC B1 for answer of $\frac{225}{512}$ (replacement)	Accept equivalent fractions, decimals ($0.53 \ldots$ or 0.54) or percentages (53% or 54%)

Paper: 1MA1/1H				
Question	Answer	Mark	Mark scheme	Additional guidance
17	Region shaded	M1 M1 A1	for two of the lines $2 y+4=x, x=3, y=6-3 x$ correctly drawn for all three correct lines correctly drawn for a fully correct region indicated with all lines correct	Accept full or broken lines for all marks Award for clear intention, shading not needed Diagram at end of mark scheme
18	17.6	P1 P1 P1 P1 A1	for correct trig statement, eg $\sin 30=\frac{h}{6}$ for complete process to find h, eg $6 \times \frac{1}{2}(=3)$ for correct substitution into the area of a trapezium formula, eg $\frac{1}{2}(a+b) \times " 3$ " $=66$ or $a+b=44$ or $\frac{1}{2}(2 x+3 x) \times h=66$ for complete correct process to find the length of $A B$, eg $\left[\frac{66 \times 2}{3} \div\left(2+{ }^{\prime \prime} 3\right.\right.$ " $\left.)\right] \times 2$ cao	An answer of $\frac{88}{5}$ gets P4 A0

Paper: 1MA1/1H				
Question	Answer	Mark	Mark scheme	Additional guidance
19	Result shown	M1 M1 M1 A1	(indep) for writing $\sqrt{12}$ as $2 \sqrt{3}$ for method to rationalise the denominator eg $\frac{8+\sqrt{12}}{5+\sqrt{3}} \times \frac{5-\sqrt{3}}{5-\sqrt{3}}$ or $\frac{8+2 \sqrt{3}}{5+\sqrt{3}} \times \frac{5-\sqrt{3}}{5-\sqrt{3}}$ oe (dep on previous M1) for expanding terms, condone one error in numerator or denominator eg $\frac{40-8 \sqrt{3}+5 \sqrt{12}-\sqrt{12} \sqrt{3}}{25-5 \sqrt{3}+5 \sqrt{3}-\sqrt{3} \sqrt{3}}$ or $\frac{40-8 \sqrt{3}+10 \sqrt{3}-2 \sqrt{3} \sqrt{3}}{25-5 \sqrt{3}+5 \sqrt{3}-\sqrt{3} \sqrt{3}}$ or $\frac{34+2 \sqrt{3}}{22}$ oe for a complete chain of reasoning leading to $\frac{17+\sqrt{3}}{11}$	This mark can be awarded whenever this is seen, which might be later in the process.
20	$\begin{gathered} x=2.1, y=5.1 \\ x=-2.9, y=-4.7 \end{gathered}$	M1 A1 A1	for drawing the graph of $y-2 x=1$ for one correct pair of values or for both correct x values, or for both correct y values for both correct pairs, correctly matched	For both A marks accept answers in the ranges $\begin{aligned} & x=2.0 \text { to } 2.2, y=5.0 \text { to } 5.2 \\ & x=-2.8 \text { to }-3.0, y=-4.6 \text { to }-4.8 \end{aligned}$ Accept values given as coordinates

Paper: 1MA1/1H				
Question	Answer	Mark	Mark scheme	Additional guidance
21 (a) (b)	$\frac{1}{4}$ $\sqrt[4]{\frac{48}{x-1}}$	M1 A1 M1 M1 M1 A1	for $f(1)=3 \times 1^{2}+1(=4)$ and a clear intention to find $g(" 4 ")$ or for $\frac{4}{\left(3 \times 1^{2}+1\right)^{2}}$ or for stating $\operatorname{gf}(x)$, eg $\frac{4}{\left(3 x^{2}+1\right)^{2}}$ oe oe for finding $\operatorname{fg}(x)$, eg $3 \times\left(\frac{4}{x^{2}}\right)^{2}+1$ or $\frac{48}{x^{4}}+1$ for start of method to find the inverse of $\operatorname{fg}(x)$, eg $y-1=3 \times\left(\frac{4}{x^{2}}\right)^{2}$ or $y-1=\frac{48}{x^{4}}$ or $x-1=\frac{48}{y^{4}}$ or $x-1=3 \times\left(\frac{4}{y^{2}}\right)^{2}$ for $y^{4}=\frac{48}{x-1}$ or $x^{4}=\frac{48}{y-1}$ or for a final answer of $\sqrt[4]{\frac{48}{y-1}}$ oe	
22	$(3,36)$	P1 P1 P1 A1	for factorising -3 from the expression, eg $-3\left(x^{2}-6 x-3\right)$ or $-3\left(x^{2}-6 x\right)+9$ for starting the process to complete the square, eg $(x-3)^{2}-9$ for completing the process of completing the square, eg $-3\left[(x-3)^{2}-12\right]$ or $-3(x-3)^{2}+36$ cao	ft from their factorising if only one error An answer only and no working is 0 marks

Question 17

Modifications to the mark scheme for Modified Large Print (MLP) papers: 1MA1 1H

Only mark scheme amendments are shown where the enlargement or modification of the paper requires a change in the mark scheme.
The following tolerances should be accepted on marking MLP papers, unless otherwise stated below:
Angles: $\pm 5^{\circ}$
Measurements of length: $\pm 5 \mathrm{~mm}$

PAPER: 1MA1_1H			
Question		Modification	Mark scheme notes
2		Wording added 'Look at the diagram for Question 2 in the Diagram Booklet. It shows an incomplete Venn diagram.' Wording added 'in the Diagram Booklet...'. Diagram enlarged. Labels 'Set A ' and 'Set B ' moved above the circles. Braille: In the diagram, add (i) for universal set, (ii) for Set A, (iii) for the overlap \& (iv) for Set B. Then add 'Ans: (i) \qquad (ii) \qquad (iii) \qquad (iv) , \qquad	Standard mark scheme
5		Wording added 'Look at the information for Question 5 in the Diagram Booklet.' Information enlarged.	Standard mark scheme

PAPER: 1MA1_1H			
Question		Modification	Mark scheme notes
6		Wording 'Look at Diagram 1 and Diagram 2 for Question 6 in the Diagram Booklet. You may be provided with a model.' The triangle labelled $A B C$. Diagram 1 to show the 3D prism. Diagram 2 to show the cross-section $A B C$. Wording added 'Diagram 1 and the model show a prism'. Wording added 'The cross section of the prism shown in Diagram 2 is a right-angled triangle labelled $A B C$.' Wording added 'Angle $A B C$ is a right angle. The base of the triangle, $B C=5 \mathrm{~cm}$.' Diagram enlarged. Right angle made more obvious. Dashed lines made longer and thicker. Model could be provided candidates.	Standard mark scheme
7		Model of the cube and sphere provided for all candidates. Wording added 'Look at Diagram 1, Diagram 2 and the formula for Question 7 in the Diagram Booklet. You may be provided with two models.' Wording 'The diagram shows...' removed and replaced with 'Diagram 1 and Model A show a cube with edges of length $x \mathrm{~cm}$.' Wording added 'Diagram 2 and Model B show a sphere of radius 3 cm .' Diagrams enlarged and stacked vertically. Dashed lines made longer and thicker. The ' 3 cm ' label and arrow moved to the left on the sphere diagram. Formula moved above the surface area diagram. Open headed arrows.	Standard mark scheme
8		Change x to y.	Standard mark scheme but note the changes to the letters.
10		Wording added 'Look at the diagram for Question 10 in the Diagram Booklet.' Wording 'The diagram shows...' removed and replaced with 'It shows...' Diagram enlarged.	Standard mark scheme

PAPER: 1MA1_1H			
Question		Modification	Mark scheme notes
11		Wording added 'Look at the diagram for Question 11 in the Diagram Booklet.' Wording 'The diagram shows...' removed and replaced with 'It shows...' Diagrams enlarged. Labels moved to the left and above the diagrams. The rectangles labelled as 'rectangle A' and 'rectangle B'. Diagrams stacked vertically. Braille: Additional words: 'Rectangle \mathbf{A} has a length of $2 w+y$ and a width of 6 . Rectangle \mathbf{B} has a length of $3 y+6$ and a width of $7 w$ '	Standard mark scheme
12		Wording added 'Look at the diagram for Question 12 in the Diagram Booklet. It shows a grid.' Wording added 'The cumulative frequency table below gives...' Table enlarged. Cumulative frequency values modified: 4 changed to 5,11 changed to 10,24 changed to 25,34 changed to 35 Wording added 'On the grid in the Diagram Booklet,..' Diagram enlarged. Open headed arrows. Axes labels moved to the left of the horizontal axis and above the vertical axis. Right axis has been labelled. Small squares removed. Braille: a spare diagram, 14 round bumpons and Wikki Stix.	Standard mark scheme but in (b) allow an answer in the range 12.6 to $14.5(\mathrm{ft})$
14		Wording added 'Look at the diagram for Question 14 in the Diagram Booklet. It shows the shape $A B C D E F$. All the measurements are in centimetres.' With the shape labelled $A B C D E F$. Wording added: ' $A B=x+1, B C=4, E F=2 x+6, A F=x+11$ ' All the marked angles are right angles.' Wording 'Here is...' removed. Diagram enlarged. Right angles made more obvious.	Standard mark scheme
15		x changed to y.	Standard mark scheme but note the changes to the letters.

PAPER: 1MA1_1H			
Question		Modification	Mark scheme notes
17		Wording added 'Look at the diagram for Question 17 in the Diagram Booklet. It shows a grid.' Diagram enlarged. Open headed arrows. The grid cut at $x=-4$. Axes labels moved to the right of the horizontal axis and above the vertical axis.	Standard mark scheme
18		Wording added 'Look at the diagram for Question 18 in the Diagram Booklet.' Wording 'Here is...' removed and replaced with 'It shows...' Wording added: ' $A B$ is parallel to $D C . B C=6 \mathrm{~cm}$ Angle $B C D=30^{\circ}$, Angle moved outside of the angle arc and the arc made smaller. Diagram enlarged.	Standard mark scheme
20		Wording added 'Look at the diagram for Question 20 in the Diagram Booklet.' Wording 'The diagram shows...' removed and replaced with 'It shows...' Diagram enlarged. Open headed arrows. Small squares removed. Axes labels moved to the right of the horizontal axis and above the vertical axis.	Standard mark scheme but for both A marks accept answers in the ranges $\begin{aligned} & x=2.0 \text { to } 2.25, y=5.0 \text { to } 5.25 \\ & x=-2.5 \text { to }-3.0, y=-4.6 \text { to }-4.9 \end{aligned}$

Mark Scheme (Results)

November 2021

Pearson Edexcel GCSE

In Mathematics (1MA1)
Higher (Calculator) Paper 2H

Paper: 1MA1/2H				
Question	Answer	Mark	Mark scheme	Additional guidance
1	$x>-1$Diagram drawn	B1	cao	Condone arrow heads or line ending to denote the 'end' of the line
		C2	for a fully correct diagram,	
		(C1	for drawing a line from -3 to 4 or (indep) for an open circle at 4 or (indep) for a closed circle at -3)	
2 (a)	12	M1	for a correct factor tree for either 60 or 84 with no more than one arithmetic error or for listing factors of 60 or 84 , at least 4 correct for either (with no more than 1 incorrect in either list), could be in factor pairs or for the prime factors of $60(2,2,3,5)$ or $84(2,2,3,7)$	Condone the use of 1 in any factor tree 60: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 84: $1,2,3,4,6,7,12,14,21,28,42,84$
		A1	for 12 or $2 \times 2 \times 3$ oe SC B1 for answer of 4 or 6 , if M0 scored	2,2,3 is not enough, it must be a product
(b)	120	M1	for a correct factor tree for either 24 or 40 with no more than one arithmetic error or for at least 3 multiples of both 24 and 40 (can include 24 and 40) or for the prime factors of either $24(2,2,2,3)$ or $40(2,2,2,5)$ or for a common multiple from their lists $(\neq 120)$	Condone the use of 1 in any factor tree $24: 24,48,72,96,120, \ldots$ 40: 40, 80, 120, ... For the list not containing 120, accept the first 3 correct multiples or one error in the first 4 multiples
		A1	for 120 or $2 \times 2 \times 2 \times 3 \times 5$ oe	

Paper: 1MA1/2H				
Question	Answer	Mark	Mark scheme	Additional guidance
10	344580.48	P1	for a start to the process to find the initial investment eg $344605 \div 1.025$ oe ($=336$ 200) or for 1.025^{3} (=1.07689....)	
		P1	for complete process to find original investment, eg $344605 \div 1.025^{3}$ oe ($=319078$ to 320265)	
		P1	for [initial investment] $\times 1.02^{2} \times 1.035 \mathrm{oe}$	[initial investment] must be clearly what they
		A1	for answer in the range 343587 to 344581	
11 (a)	$(9,7.5)$	M1	$\begin{aligned} & \text { for } x \text { coordinate }=P O(6) \times \frac{3}{2}(=9) \text { or } y \text { coordinate }=O Q(3) \times \frac{5}{2}(=7.5) \\ & \text { or } P O(6) \times \frac{5}{2}(=15) \text { or } O Q(3) \times \frac{3}{2}(=4.5) \end{aligned}$	Could use P and R or Q and R as ft from (a)
		A1	cao	
	$y=-2 x+3$	P1	for process to find the gradient of the line, eg $3 \div 6(=0.5)$ or $y=m x+3$	
		P1	for process to find gradient of perpendicular eg $-1 \div[$ gradient of $P Q](=-2)$	
		A1	for $y=-2 x+3$ oe	

Paper: 1MA1/2H				
Question	Answer	Mark	Mark scheme	Additional guidance
15	11.4	M1	for start to method to find the length of $B C$ eg. $8^{2}+11^{2}-2 \times 8 \times 11 \times \cos 72$	If an answer within the given range is seen in working and rounded incorrectly award full marks. Any alternative method must be complete If an answer within the given range is seen in working and rounded incorrectly award full marks.
	41.8	M1	(dep on M1) for method to use correct order of operations, eg. $64+121-54.38 \ldots .$. ($=130.61 \ldots$)	
(b)		A1 M1	for answer in the range 11.4 to 11.5 for $0.5 \times 8 \times 11 \times \sin 72(=41.8 \ldots)$	
		A1	for answer in the range 41.5 to 41.9	
$16 \quad \text { (a) }$ (b)	$\begin{aligned} & x_{1}=1.817 \\ & x_{2}=1.853 \\ & x_{3}=1.846 \end{aligned}$	M1	for a correct method to find x_{1} eg $\sqrt[3]{10-2 \times 2}(=1.8171 \ldots \ldots)$ (dep on M1) for substitution of x_{1} to give x_{2} and x_{2} to give x_{3} for $x_{1}=1.81(71 \ldots), x_{2}=1.85(33 \ldots)$ and $x_{3}=1.84(62 \ldots)$ cao	Accept an accuracy of 2dp or more rounded or truncated
		M1		
		A1		
	$a=2, b=-10$	C1		

Paper: 1MA1/2H				
Question	Answer	Mark	Mark scheme	Additional guidance
19	25:36	P1 P1 A1	for $\sqrt[3]{125}(=5)$ and $\sqrt[3]{27}(=3)$ oe OR for correct process to find the radius of A and radius of B (3.10... and 1.86...) for method to find values in ratio of length between A and C eg 5 and $2 \times 3(=6)$ oe or " $3.10 \ldots$.." and " $1.86 \ldots$.." $\times 2(=3.72 \ldots)$ OR 25 and 36 OR for correct process to find SA of A and SA of C (120.(8...)) and (174.(0...)) for $25: 36$ oe eg 1: 1.44	Accept scale factors expressed as fractions or decimals eg 1.66, 1.67, 0.6 or better Ignore units throughout For both P marks the lengths need not be written as a ratio
20	0.748	P1 P1 P1 A1	for a process to find a correct probability product for 2 consecutive days, eg. $0.7 \times 0.8($ rain $\mathrm{M}+\mathrm{T})$ or $0.7 \times 0.2($ rain $\mathrm{M}+$ no rain T$)$ or 0.3×0.6 (no rain $M+$ rain on T) or $0.3 \times 0.4($ no rain $M+T)$ for process to find a correct triple probability product for it raining on Wednesday, eg. $0.7 \times 0.8 \times 0.8($ rain $\mathrm{M}+\mathrm{T}+\mathrm{W})\left(=0.448\right.$ or $\frac{56}{125}$ oe $)$ or $0.7 \times 0.2 \times 0.6($ rain $\mathrm{M}+$ no rain $\mathrm{T}+$ rain W$)\left(=0.084\right.$ or $\frac{21}{250}$ oe) or $0.3 \times 0.6 \times 0.8$ (no rain $\mathrm{M}+$ rain $\mathrm{T}+$ rain W$)\left(=0.144\right.$ or $\frac{18}{125}$ oe) or $0.3 \times 0.4 \times 0.6($ no rain $M+$ no rain $T+$ rain $W)\left(=0.072\right.$ or $\frac{9}{125}$ oe $)$ for complete process, eg. " $0.448 "+$ " $0.084 "+" 0.144 "+" 0.072 "$ oe eg, $\frac{187}{250}$	Throughout accept probabilities given as fractions or percentages Could be for Tuesday and Wednesday also NB: correct answer without supportive working gets 0 marks

Paper: 1MA1/2H				
Question	Answer	Mark	Mark scheme	Additional guidance
21	$\begin{aligned} & 984 .(3677853) \\ & \text { and } \\ & 969 .(0181643) \end{aligned}$	B1	stating bound of 51.95 or 52.05 or 1.445 or 1.455	Accept 52.049 or $52.0499 \ldots$ for 52.05 Accept $1.454 \dot{9}$ or $1.4549 \ldots$ for 1.455
		P1	for process to rearrange formula to give g as the subject, eg $g=\frac{4 \pi^{2} l}{T^{2}}$ oe	Rearrangement may occur after substitution, in this case correct bounds are not needed for this mark
		P1	for process to use LB of l and UB of T in formula for g or T	$51.95 \leq[$ LB of $l]<52.0$
			or process to use UB of l and LB of T in formula for g or T $\operatorname{eg} \frac{4 \pi^{2}[\operatorname{LB} \text { of } l]}{[\mathrm{UB} \text { of } T]^{2}} \text { or } \frac{4 \pi^{2}[\mathrm{UB} \text { of } l]}{[\operatorname{LB} \text { of } T]^{2}}$	$1.45<[\mathrm{UB} \text { of } T] \leq 1.455$ $\begin{aligned} & 52.0<[\mathrm{UB} \text { of } l] \leq 52.05 \\ & 1.445 \leq[\mathrm{LB} \text { of } T]<1.45 \end{aligned}$ Rearrangement may not be correct
		A1	$\begin{aligned} & \text { for upper bound }=984 .(3677853) \text { or } 984 .(1125639 . .) \\ & \text { and lower bound }=969 .(0181643) \text { or } 968 .(7669227 . .) \end{aligned}$	NB: correct answer without supportive working gets 0 marks Accept answers rounded or truncated to 3 sf or better

Question 1

Question 18(c)

60: $1,2,3,4,5,6,10,12,15,20,30,60$
84: 1, 2, 3, 4, 6, 7, 12, 14, 21, 28, 42, 84

Modifications to the mark scheme for Modified Large Print (MLP) papers: 1MA1 2H

Only mark scheme amendments are shown where the enlargement or modification of the paper requires a change in the mark scheme.
The following tolerances should be accepted on marking MLP papers, unless otherwise stated below:
Angles: $\pm 5^{\circ}$
Measurements of length: $\pm 5 \mathrm{~mm}$

PAPER: 1MA1_2H			
Question		Modification	Mark scheme notes
1	(a)	Wording added 'Look at the diagram for Question 1(a) in the Diagram Booklet. It shows a number line.' Wording 'shown on this number line' removed and replaced with 'shown on the number line.' Diagram enlarged. The scale cut at -3 , but -3 still marked. Axis label moved to the right. Scale markings moved above and below. Open headed arrows and shortened at the end of the scale.	Standard mark scheme
1	(b)	Wording added 'Look at the diagram for Question 1(b) in the Diagram Booklet. It shows a blank number line.' Diagram enlarged. The scale cut at -4 , but -4 still marked. Open headed arrow and shortened at the end of the scale. Axis label moved to the right. Scale markings moved above and below. Braille: a spare diagram is provided with 4 round bumpons, 4 square bumpons, Wikki Stix and drawing film.	Standard mark scheme

PAPER: 1MA1_2H			
Question		Modification	Mark scheme notes
3		Wording added 'Look at the diagram for Question 3 in the Diagram Booklet.' Wording added 'The travel graph for the first 15 minutes of his journey is shown in the Diagram Booklet.' Diagram enlarged. Right axis labelled. Open headed arrows. Axes labels moved to the top of the vertical axis and to the left of the horizontal axis. In (b) Wording added 'On the grid in the Diagram Booklet,...'. Braille: time shown with colons. Braille alternative wording: 'The diagram shows an incomplete travel graph for Sam's car journey.' 'The first 15 minutes of his journey is represented on the graph.' In part (b) for Braille a spare diagram is provided with 6 round bumpons and Wikki Stix.	Standard mark scheme
4	(a)	Table enlarged and turned vertical. Wording added 'There are four spaces to fill.' Braille: In the table (i), (ii), (iii), \& (iv) in the blank spaces, then 'Ans: (i) \qquad (ii) \qquad (iii) \qquad (iv) \qquad _	Standard mark scheme
4	(b)	Wording added 'Look at the diagram for Question 4(b) in the Diagram booklet. It shows a grid.' Diagram enlarged. Small squares removed. Open headed arrows. Axes labels moved to the top of the vertical axis and to the right of the horizontal axis. Braille: a spare diagram is provided with 16 round bumpons and Wikki Stix.	Standard mark scheme but in part (c) answers in the ranges $2.6 \text { to } 2.9 \text { and }-0.6 \text { to }-0.9$
5		Wording added 'Look at Diagram 1 and Diagram 2 for Question 5 in the Diagram Booklet. Diagram 1 shows a right-angled triangle labelled shape A with a base length of 10 mm and a vertical height of 8 mm .' Diagrams enlarged. Right angles made more obvious. Wording added 'Diagram 2 is a shaded shape made from two shape A triangles.' 'shape A' wording added inside the triangles. Wording 'Work out the perimeter of the shaded shape in Diagram 2.'	Standard mark scheme

PAPER: 1MA1_2H			
Question		Modification	Mark scheme notes
6	(a)	Wording added 'Look at the diagram for Question 6(a) in the Diagram Booklet. It shows a rightangled triangle, $A B C$.' Wording added: ' $A C=12 \mathrm{~cm}$, Angle $B A C=56^{\circ}$, Angle $C A B$ is a right angle.' Diagram enlarged. Right angle made more obvious. Angle moved outside of the angle arc and the angle arc made smaller.	Standard mark scheme
6	(b)	Wording added 'Look at the diagram for Question 6(b) in the Diagram Booklet. It shows a rightangled triangle, $P Q R$.' Wording added: ' $P R=18 \mathrm{~cm}, R Q=15 \mathrm{~cm}$, Angle $P Q R$ is a right angle, Angle $P R Q$ is marked x ' Diagram enlarged. Right angle made more obvious. Angle moved outside of the angle arc and the angle arc made smaller.	Standard mark scheme
8		Wording added 'Look at Table 1 and Table 2 for Question 8 in the Diagram Booklet. Table 1 is a grouped frequency table which gives...'. Wording 'This is the table that Brian drew.' removed and replaced by 'Brian drew Table 2.' Tables enlarged. For Braille the alternative wording is 'The grouped frequency table below...' and 'The table that Brian drew is shown below.'	Standard mark scheme

PAPER: 1MA1_2H			
Question		Modification	Mark scheme notes
Q		Wording added 'Look at the diagram for Question 9 in the Diagram Booklet. It is a box plot which shows...' The lower quartile moved down to 40 and the upper quartile moved down to 180 . Small squares removed. Diagram enlarged. Open headed arrows. Horizontal axis label moved to the left. The box plot labelled 'Monday'.	Part (a): M1 for upper quartile $=180$ or lower quartile $=40$ or an indication that they are trying UQ - LQ A1 for 140 Part (b) standard mark scheme
9	(c)	Wording added 'Look at the table for Question 9(c) in the Diagram Booklet. It is shown below the box plot. It gives...'. Table enlarged. The lower quartile changed to 40 . The table labelled 'Tuesday'.	Standard mark scheme but with the amended figures: M T Shortest time 20 20 Lower quartile 40 40 Median 120 100 Upper quartile 180 140 Longest time 200 210 Range 180 190 IQR 140 100
10		Wording added 'Look at the information for Question 10 in the Diagram Booklet.' The names '(Louise)' and '(Sadiq)' added beside each title.	Standard mark scheme
11		Wording added 'Look at the diagram for Question 11 in the Diagram Booklet. It shows a sketch...'. Diagram enlarged. Crosses changed to solid dots. Open headed arrows. Axes labels moved to the top of the vertical axis and to the right of the horizontal axis.	Standard mark scheme
12		The letter x changed to y.	Standard mark scheme but note the change in letters
14		Wording added 'Look at the diagram for Question 14 in the Diagram Booklet.' Diagram enlarged. The line $S B T$ reduced slightly so that it is not too long. Angle moved outside of the angle arc and the angle arc made smaller.	Standard mark scheme

PAPER: 1MA1_2H			
Question		Modification	Mark scheme notes
15		Wording added 'Look at the diagram for Question 15 in the Diagram Booklet. It shows the triangle ABC.' Wording added: ' $\mathrm{AC}=8 \mathrm{~cm}, \mathrm{AB}=11 \mathrm{~cm}$, Angle $\mathrm{CAB}=72^{\circ}$, Diagram enlarged. Angle moved outside of the angle arc and the angle arc made smaller.	Standard mark scheme
17		Wording added 'Look at the diagram for Question 17 in the Diagram Booklet. It shows a histogram.' The values changed as follows: 0 to 5 moved up to $1.0,5$ to 15 moved down to 1.5 15 to 25 moved up to 2.5 , 25 to 40 moved down to 1.0 Diagram enlarged. Small squares removed. Open headed arrows. Axes labels moved to the top of the vertical axis and to the left of the horizontal axis. Shading changed to dotty shading. Right axis has been labelled.	P1 for process to find one correct frequency, eg. $1.0 \times 5(=5)$ or $1.5 \times 10(=15)$ or $2.5 \times 10(=25)$ or $1.0 \times 15(=15)$ or to find areas eg $5 \times 10(=50)$ or $10 \times 15(=150)$ or $10 \times 25(=250)$ or $15 \times 10(=150)$ P1 for process to find total number of people, eg. " 5 " + " 15 " + " 25 " + "15" (= 60$)$ or to find total area eg " $50 "+" 150 "+" 250 "+" 150 "(=600)$ P1 for process to find 20% of the total number of people, eg. " 60 " $\times 0.2$ oe ($=12$) or for process to find 20% of the total area eg" 600 " $\times 0.2$ oe ($=120$) A1 cao for 28

| PAPER: 1MA1_2H | Modification | | |
| :---: | :---: | :--- | :--- | :--- |
| Question | | Mark scheme notes | |
| 18 | (a),
 (b) | Wording added 'Look at the diagram for Question 18(a) and (b) in the Diagram Booklet. It
 shows...'
 Diagram enlarged. Small squares removed.
 Axes labels moved to the top of the vertical axis and to the right of the horizontal axis. | Standard mark scheme but in (a) accept answers in the
 ranges 32 to 45, 135 to 148,392 to 405 and 495 to 508 |
| 18 | (c) | Wording added 'Look at the diagram for Question 18(c) in the Diagram Booklet. It shows...'
 Diagram enlarged. Small squares removed.
 Axes labels moved to the top of the vertical axis and to the right of the horizontal axis | Standard mark scheme |
| 21 | | Lowercase l to capital \mathbf{L}. | Standard mark scheme |

Mark Scheme (Results)

November 2021

Pearson Edexcel GCSE

In Mathematics (1MA1)
Higher (Calculator) Paper 3H

Paper: 1MA1/3H				Additional guidance
Question	Answer			
9 (a) (b)	4 Statement	$\begin{aligned} & \text { P1 } \\ & \text { A1 } \\ & \text { C1 } \end{aligned}$	$12 \times 5 \div 15$ cao Acceptable examples it could take more time it could take less time it could take more or less time it would take longer if they worked at a slower rate Not acceptable examples the time will be less as there are more people if the rate at which the 15 people work changes it would have taken longer it would take less time	
10	14.14	P1 P1 P1 A1	works out scale factor eg $(9+6) \div 6(=2.5)$ OR for start of process to find angle $D B E$ eg $\sin B=\frac{2}{6}$ oe uses Pythagoras eg $6^{2}-2^{2}(=32)$ or $\sqrt{32}(=5.6 \ldots)$ OR calculates $A C$ eg $2 \times$ " 2.5 " (= 5$)$ OR for complete process to find angle $D B E$ eg $\sin ^{-1}\left(\frac{2}{6}\right)(=19.4 \ldots)$ complete process to find $C B$ eg " $2.5 " \times " \sqrt{ } 32 "(=10 \sqrt{ } 2)$ or $\sqrt{(9+6)^{2}-" 5^{\prime 2}} \quad(=10 \sqrt{ } 2)$ OR uses trigonometry, eg $15 \times \cos$ " $19.4 \ldots$..." 14.1 to 14.15	Note method can be carried out in either order May be seen on diagram If the answer is given within the range but then rounded incorrectly award full marks.

Paper: 1MA1/3H		Mark \quad Mark scheme		
Question	Answer			Additional guidance
14	8:12:9:1	P1 P1 P1 A1	for $2+3(=5)$ and $9+1(=10)$ OR for assigning a total number of sweets for $\mathrm{F}+\mathrm{G}$ and $\mathrm{O}+\mathrm{J}$ eg $\mathrm{F}+\mathrm{G}=100, \mathrm{O}+\mathrm{J}=50$ for finding correct multiplier for relationship between totals for $\mathrm{F}+\mathrm{G}$ and $\mathrm{O}+\mathrm{J}$ eg $\times 4$ to get from 5,10 to 20,10 OR for working out the number of sweets from their totals for $\mathrm{F}, \mathrm{Geg} 40,60$ or for O, J, eg 45, 5 for $2 \times 4(=8)$ and $3 \times 4(=12)$ OR for ratio in unsimplified form, eg $40: 60: 45: 5$ cao	May be in algebraic form, eg $2 a+3 a(=5 a)$ and $9 a+1 a(=10 a)$ May be in algebraic form, eg $\mathrm{F}+\mathrm{G}=5 a, \mathrm{O}+\mathrm{J}=2.5 a$
15	0.7 to 1.1	M1 M1 A1	for tangent to the curve drawn at $t=12$ for method to find the gradient of their tangent, eg $28 \div 30$ for answer in the range 0.7 to 1.1 dependent upon tangent drawn	Working may be seen on the diagram Ignore negative signs

Paper: 1MA1/3H		Mark	Mark scheme	Additional guidance
Question	Answer			
16	Shown (supported)	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { C1 } \end{aligned}$	for eliminating y or x, eg $x^{2}+3 x-3=5 x-4$ for rearranging, collecting terms and setting to 0 eg $x^{2}-2 x+1(=0)$ for factorising or solving eg $(x-1)^{2}(=0)$ for statement confirming only 1 point in common eg only 1 root or only 1 value of x so only 1 set of coordinates	There must be a statement in words for the award of this mark
17	$x=\frac{1}{2} z^{6}$	M1	for setting up an equation eg $x=k y^{2}$ oe or $y=c z^{3}$ oe	Accept use of proportionality sign, eg $x \propto y^{2}$ or $y \propto z^{3}$ or $x \propto k y^{2}$ or $y \propto c z^{3}$
		M1	for eliminating y eg $x=k\left(c z^{3}\right)^{2}$ oe OR substitutes values in both equations, eg $32=k y^{2}$ and $y=c 2^{3}$	Accept use of proportionality sign, eg $32 \propto k y^{2}$ and $y \propto c 2^{3}$
		M1 A1	for substituting in 32 and 2 to find the constant, eg $32=m 2^{6}$ OR combines equations, eg $32=k c^{2} 2^{6}$ oe	

Paper: 1MA1/3H				Additional guidance
Question	Answer			
18	$\frac{2}{5} \mathbf{a}+\mathbf{b}$	P1 P1 P1 A1	for relationship involving D eg $\overrightarrow{O D}=\frac{2}{5} \overrightarrow{O B}$ or $\overrightarrow{D B}=\frac{3}{5} \overrightarrow{O B}$ or for relationship involving E eg $\overrightarrow{B E}=\frac{1}{5} \overrightarrow{B C}$ or $\overrightarrow{E C}=\frac{4}{5} \overrightarrow{B C}$ for relationship involving D in terms of \mathbf{a} and \mathbf{b} eg $\overrightarrow{O D}=\frac{2}{5}(\mathbf{a}+\mathbf{b})$ or $\overrightarrow{D B}=\frac{3}{5}(\mathbf{a}+\mathbf{b})$ or for relationship involving E in terms of \mathbf{a} and \mathbf{b} eg $\overrightarrow{B E}=\frac{1}{5}(-\mathbf{b}-\mathbf{a}+3 \mathbf{b})$ oe or $\overrightarrow{E C}=\frac{4}{5}(-\mathbf{b}-\mathbf{a}+3 \mathbf{b})$ oe or $\overrightarrow{B C}=2 \mathbf{b}-\mathbf{a}$ oe or $\overrightarrow{C B}=\mathbf{a}-2 \mathbf{b}$ oe (dep P2) for expression for $\overrightarrow{D E}$ in terms of \mathbf{a} and \mathbf{b} eg $\overrightarrow{D E}=\frac{3}{5}(\mathbf{a}+\mathbf{b})+\frac{1}{5}(-\mathbf{b}-\mathbf{a}+3 \mathbf{b})$ for $\frac{2}{5} \mathbf{a}+(1) \mathbf{b}$ or $\frac{1}{5}(2 \mathbf{a}+5 \mathbf{b})$	
19	0.95	P1 P1 A1	for initial use of the formula eg $3610=k P_{n}$ or $P_{n+1}=4000 k$ or for $P_{n+2}=k^{2} P_{n}$ or for $3610=k^{2} \times 4000$ for a complete method to find k eg $\sqrt{\frac{3610}{4000}}$ or ± 0.95 oe	Accept n or any integer replacement for n This may be seen in steps

Paper: 1MA1/3H		Mark Mark scheme		Additional guidance
Question	Answer			
20	$1-\left(\frac{1}{2}\right)^{n}-\left(\frac{1}{2}\right)^{n}$	M1 A1	$\begin{aligned} & \text { for }\left(\frac{1}{2}\right)^{n} \text { oe } \\ & \text { oe eg } 1-\left(\frac{1}{2}\right)^{n-1} \end{aligned}$	
$21 \quad \text { (a) }$ (b)	19.1 Statement	M1 A1 C1	for a method to find an estimate for the area of at least 1 trapezium under the curve eg $0.5 \times 1 \times(4+6)$ or $0.5 \times 1 \times(6+7.2)$ or $0.5 \times 1 \times(7.2+7.8)$ for a complete method eg $0.5 \times 1 \times(4+6)+0.5 \times 1 \times(6+7.2)+0.5 \times 1 \times(7.2+7.8)$ or $0.5\{(4+7.8)+2(6+7.2)\}$ cao eg distance (travelled)	Allow a maximum of 2 errors in y values used Ignore any reference to units If units are given they must be correct
22	$\frac{1}{x(x+4)}$	M1 M1 A1	inverting the fraction and multiplying eg $\frac{6 x^{3}}{\left(9 x^{2}-144\right)} \times \frac{3(x-4)}{2 x^{4}}$ for factorising $9 x^{2}-144$, eg $(3 x-12)(3 x+12)$ cao	

Paper: 1MA1/3H				Additional guidance
Question	Answer			
23	Proof (supported)		for using the sine rule on triangle $A B D$ or on triangle $A D C$, to involve sides $A B, B D, A C$, or $D C$ $\operatorname{eg} \frac{A B}{\sin A D B}=\frac{B D}{\sin x} \text { oe or } \frac{A C}{\sin A D C}=\frac{D C}{\sin x} \text { oe }$ OR for an expression for the area of triangle $A B D$ or for the area of triangle $A D C$ eg $\frac{1}{2} A B A D \sin x$ or $\frac{1}{2} A D A C \sin x$ or $\frac{1}{2} h B D$ or $\frac{1}{2} h D C$ for using the sine rule on both triangle $A B D$ and on triangle $A D C$, to involve sides $A B, B D, A C$, or $D C$ eg $\frac{A B}{\sin A D B}=\frac{B D}{\sin x}$ oe and $\frac{A C}{\sin A D C}=\frac{D C}{\sin x}$ oe OR for two expressions for the area of either triangle $A B D$ or for triangle $A D C$ eg $\frac{1}{2} A B A D \sin x$ and $\frac{1}{2} h B D$ or $\frac{1}{2} A D A C \sin x$ and $\frac{1}{2} h D C$ for stating or showing $\sin A D B=\sin A D C$, eg $\sin y=\sin (180-y)$ OR for using two expressions to form an equation $\mathrm{eg} \frac{\frac{1}{2} A B A D \sin x}{\frac{1}{2} A D A C \sin x}=\frac{\frac{1}{2} h B D}{\frac{1}{2} h D C} \text { oe }$ for a full method to arrive at the given answer	Accept extra letters eg y shown on diagram for any angle used

Question 8(a)

Question 8(b)

Modifications to the mark scheme for Modified Large Print (MLP) papers: 1MA1 3H

Only mark scheme amendments are shown where the enlargement or modification of the paper requires a change in the mark scheme.
The following tolerances should be accepted on marking MLP papers, unless otherwise stated below:
Angles: $\pm 5^{\circ}$
Measurements of length: $\pm 5 \mathrm{~mm}$

PAPER: 1MA1_3H			
Question		Modification	Mark scheme notes
1		Wording added 'Look at the diagram for Question 1 in the Diagram Booklet. It is a scatter graph which shows...' Diagram enlarged. Open headed arrows. Right axis has been labelled. Axes labels moved to the left of the horizontal axis and above the vertical axis. Crosses changed to solid dots. Small squares removed. Braille: There will be a spare diagram and Wikki Stix	Standard mark scheme but in part (b) use a range of 12.5 to 15
5		Change a to n.	Standard mark scheme but note the change in letter.
6		Wording added 'Look at the table for Question 6 in the Diagram Booklet.' Wording added 'The table in the Diagram Booklet...'; Table enlarged and turned vertical. In part (a) Wording added 'in the Diagram Booklet.'; Wording added 'There are two spaces to fill.' Braille: In the table letters (i) \& (ii) placed in the blank spaces with an answer line: 'Ans: (i) \qquad (ii) \qquad ,	Standard mark scheme
7		Wording added 'Look at the diagram for Question 7 in the Diagram Booklet.' Wording 'The diagram shows...' removed and replaced with 'It shows...' Wording added ' $O P=O R=8 \mathrm{~cm}$.' Wording added 'The marked angle is a right angle.' Diagram enlarged. Right angle made more obvious. Shading changed.	Standard mark scheme

PAPER: 1MA1_3H			
Question		Modification	Mark scheme notes
8	(a)	Wording added 'Look at the diagram for Question 8(a) in the Diagram Booklet.' Wording 'below' removed and replaced with 'in the Diagram Booklet,..' Diagram enlarged. Open headed arrows. Axes labels moved to the right of the horizontal axis and above the vertical axis. Braille: also provided with a spare diagram, Wikki Stix and drawing film	
8	(b)	Wording added 'Look at the diagram for Question 8(b) in the Diagram Booklet.' Wording 'below' removed and replaced with 'in the Diagram Booklet,..' Diagram enlarged. Open headed arrows. Axes labels moved to the right of the horizontal axis and above the vertical axis. Braille: also provided with a spare diagram, Wikki Stix and drawing film	
10		Wording added 'Look at the diagram for Question 10 in the Diagram Booklet.' Wording added 'Triangle $D E B$ is smaller than triangle $A C B$.' Wording added 'Both the marked angles are right angles.' The measurements $9 \mathrm{~cm}, 2 \mathrm{~cm}$ and 6 cm added to the diagram. Diagram enlarged. Right angles made more obvious. Braille alternative wording to that shown above: 'Triangle $D E B$ is shaded and is smaller than triangle $A C B$.'	
12		Change a to m.	Standard mark scheme but note letter change.
13		Wording added 'Look at the diagram for Question 13 in the Diagram Booklet.' Wording 'A pattern is made from four identical rectangles' removed and replaced with 'It shows a pattern made from four identical rectangles within a set of axes.' Diagram enlarged. Open headed arrows. Axes labels moved to the right of the horizontal axis and above the vertical axis. Crosses changed to solid dots. Wording added 'Point C is marked on the diagram in the Diagram Booklet.'	Standard mark scheme

PAPER: 1MA1_3H			
Question		Modification	Mark scheme notes
15		Wording added 'Look at the diagram for Question 15 in the Diagram Booklet. It shows a graph...' Diagram enlarged. Open headed arrows. Right axis labelled. Small squares removed. Axes labels moved to the left of the horizontal axis and above the vertical axis.	Standard mark scheme
18		Wording added 'Look at the diagram for Question 18 in the Diagram Booklet.' Wording ' $O A B C$ is a trapezium' removed and replaced with 'It shows a trapezium $O A B C$.' Wording added 'A straight line inside the trapezium joins point O and point B.' Diagram enlarged.	Standard mark scheme
21		Wording added 'Look at the diagram for Question 21 in the Diagram Booklet. It is a...' Diagram enlarged. Open headed arrows. Axes labels moved to the left of the horizontal axis and above the vertical axis. Right axis has been labelled. Small squares removed. Braille: also provided with a spare diagram and Wikki Stix.	Standard mark scheme, but some leeway needs to be given with regard to reading off the vales, and therefore also in the answer.
22		Change x to y.	Standard mark scheme but note letter change.
23		Wording added 'Look at the diagram for Question 23 in the Diagram Booklet.' Wording ' $A B C$ is a triangle' removed and replaced with 'It shows triangle $A B C$.' Diagram enlarged. Angles moved outside of the angle arcs and the arcs made smaller.	Standard mark scheme

